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Abstract

We introduce a new scheme for real-coded lattice gas to the numerical simulation of immiscible multiphase fluids.
This scheme is based on a minimization principle. A numerical example demonstrates the spontaneous segregation of
N-phase in two dimensions. Numerical studies on the surface tension between two fluids show a good agreement with
Laplace’s law. The reproduction of Brownian motion for single droplet was verified through Maxwell-Boltzmann
distribution of its velocity. A preliminary application illustrates a simulation of many immiscible droplets dispersed in
another fluid.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Multiphase fluid flows occur widely in nature and engineering processes. Oil-water flows, boiling fluids,
processing on paints, coatings and foodstuffs, biological fluids are cited. Since the effective interactions
between solute—solute are modified by the fluid flows, the nature of the fluid is changed when an external
flow field would be applied to the fluid. Therefore, a direct simulation of such a complex fluid is a chal-
lenging task. However, the dynamics of such systems occur on long-time scales and over long distances.
Thus, the simulation model requires an ability to get access to both microscale and macroscale. One of
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candidates is a series of mesoscopic simulation models such as lattice Boltzmann method (LBM) [1,2],
lattice gas automata (LGA) [3] and dissipative particle dynamics (DPD) [4].

Recently, a particle-based mesoscopic model for single-phase fluids was introduced by Malevanets and
Kapral [5]. This model resembles LGA in synchronous discrete time evolution and in discretizing the space
with regular lattices, but differs from LGA in using continuous velocities and multi particles in a single cell.
Usually, a regular lattice with links of unit length is employed in [5], so that the cell is a square in 2D or a
cube in 3D. The evolution of the system consists of two processes, namely, streaming and collision. The
position of every particle is renewed in the streaming process and the update of velocity is done in the
collision process. In this model, the mesoscopic dynamics preserve the conservation laws for mass, mo-
mentum and energy. As a result, the hydrodynamic equations are obtained in the macroscopic limit.

Malevanets and Kapral [5] employed a stochastic method for the complete translation of each particle in
the simulation system. In particular, each particle is translated accurately only according to the integer part
of its velocity. The fractional part of its velocity is used, however, as a probability distribution for a random
walk process that followed. The consequence of this special translation is that particles can meet others at a
lattice site (the crossing point of lattice links). Therefore, the “physical contacts” of particles are ensured in
the pre-collision stage. However, the random walk process could be unnecessary for two reasons: first,
collisions can occur among particles staying in a single cell instead of at a single site; second, since particles
which have continuous positions are distributed uniformly within a single cell, translating particles accu-
rately (according to both the integer and fractional part of coordinates) is equivalent to translating them
from the randomly shifted locations (with integer coordinates). We realized these facts and modified the
original model [5] to real-coded lattice gas (RLG) [6]. Note that Malevanets and Kapral [7] also developed
the same idea independently at almost the same time. The computational efficiency of RLG is improved
without the random walk process.

An analytical and numerical analysis on the fundamental questions such as the proof of Galilean in-
variance [8], the expression of transport coefficients [9—11] and the nature of thermal fluctuations of RLG
[12] has been presented. Regarding RLG’s major advantages, one may mention as follows: RLG has the
simple algorithm, and the reproduction of thermal fluctuating hydrodynamics. The latter would be very
useful, for example, in studying problems with flow instability or the Brownian motions. A variety of
applications have already been studied using RLG method: the solvent dynamics [13], the dynamics of
short polymer chains [14], the immiscible two-phase dynamics [6], the self-aggregation of amphiphilic
surfactants [15] and the flow with solid suspensions [16]. With the encouraging results from these studies, it
seems that RLG is very promising for the simulation of complex fluids.

The extension of [5] to the binary fluids was introduced by Hashimoto et al. [6], which we shall call
immiscible real-coded lattice gas (IRLG), based on the two-component lattice gas model developed by
Rothman and Keller [17]. Both dynamics of the phase segregation and dynamics of bubbles have been
reproduced by IRLG. However, IRLG has no framework to simulate N-phase fluids. In this study, we
present the new scheme for real-coded lattice gas to simulate immiscible multiphase fluids by introducing
the N-color collision rule.

The outline of this paper is as follows. Section 2 outlines the single-phase RLG model. In Section 3, we
describe the new extension that leads to multiphase fluids. Numerical simulations by our model are dis-
played in Section 4. The concluding remarks are given in Section 5.

2. Single-phase fluids model
First of all, it might be helpful to give an explanation of the single-phase RLG model. In the model, the

particle dynamics consists of two processes, namely, streaming and collision. In the streaming, the position
vector of each particle is shifted through a unit time interval as follows:
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Here, r;&band v,&Pare the position and the velocity vectors of particle i at time ¢. In the collision, particles
exchange their momentum and kinetic energy if they happen to reside in the same cell. The process is
formulated as follows:

v,&p 1P ViVa¥ab b pQdv.&b  Vav#b bb &b

Here, Vo¥x¥b bis the velocity of the center of mass for those “colliding particles”. The vector in the
bracket % stands for the integer part of r,. Taking the mass of particle i as m;, VO¥¥P bcan be
calculated as

1
V&R, 1P Vm; myv, PR, Yx,&P P Bb

where Ry, ¥4 /1, p ml, p nl. is the arbitrary lattice point vector which only has integer components. Unit
vectors along the x-, y- and z-directions are indicated as 1,, 1, and 1.. The total mass in a cell can be
calculated as follows:

Mm/mlz> tb 1/42 miéa{/m,, 1/2r,-a‘l3 p b

The collision matrix € is usually selected randomly from a rotation group which can ensure the conser-
vation of mass, momentum and energy.  can be written explicitly, for example in 2D space with an ar-
bitrary deflection 6 as follows:

QY 0950 sin 0 . fo3])
sinf@ cos0

The kinetic theory of such a particle dynamics proves both the Maxwell-Boltzmann type equilibrium and
the existence of an H-theorem [7].

3. Multiphase fluids model
3.1. Introduction

In the immiscible binary model [6], the particles were colored either red or blue, and the collision rule
was modified to obtain surface tension between the two fluids. This two-phase collision rule has been
constructed from the intuitive belief on the phase-segregating behavior, and yet, extension of [6] to N-phase
fluids may not appear straightforward. In this section, we introduce a multi-color collision rule in terms of a
multi-color potential energy.

3.2. The definition of the color potential energy

We define the multi-color potential energy for a colored particle in the multi-color field. In the beginning,
we define the color flux and the multi-color field for particle i. The color flux of particle 7 is a relative
velocity against the colliding particles in a cell as follows:

p; Yav;, VO% P &b
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The color field is a color gradient due to the color differences in neighboring cells as follows:

Kc,-c,-

E; Y 70% Yox; POl j/ox; Yex; P P

Jik, Biy & Vexi ]

Here, the reference to time ¢ is omitted for the simplicity. ¢; indicates the color of particle i, and the color
takes one of blue, red, green, yellow and so on. x,,, indicates the amplitude parameter of the interaction
between “c;”” color and “c;” color. k., should take a positive real number for an attractive interaction or a
negative real number for a repulsive interaction. d is the dimension number. In the above equation, we have
taken only the nearest neighbor sites.

To couple the multi-color interaction with the particle collision process equation (2), we define the color

torque N; of particle i as follows:

N, 8v, Vb E, &b
Yap, E, db
Ya  piE;sindp,Rp,. 310

Here, ¢, indicates the angle from E; to p; on the plane p;E; which consists of E; and p,. ¢, is the unit vector
normal to the plane p;E;. We take the plus direction of (,?)i for the increment of ¢,.

Now, we consider the torque work. The torque work d; of the infinitesimal rotation by the angle d¢ is
calculated as the following:

dW, YN, d¢d, Ya piE;sindp,pd¢. 8l1p
Thus, the whole work from ¢, to qﬁf.) is the following:

0

AW, Ya piE; cosdpP  p;E; cosdp,bp alzp
b

The multi-color potential energy U; of particle i is defined as the work against d#; along the opposite path

¢

Uﬂ/4/ dw; al3b
#?

Ya  piE;cosdp,B dl4p

Y, p, E. al5p

Here, we choose db? Yam/2 as the potential origin. From Eq. (15), it is clear that U; is the minimum value
when p; is parallel to E,.

3.3. The algorithm for multiphase fluids

In this section, we describe the kernel algorithm of multiphase fluids. The algorithm is based on the
minimization of the multi-color potential energy with the time evolution, and the algorithm is implemented
in the multi-particle collision Eq. (2). Since the multi-particle collision is operated at each cell, we shall
define the multi-color potential energy at each cell. Thus, we take the sum of the multi-color potential
energy over all particles as follows:

ZUil/“/dVZ U.3Xb slep

Here, ¢ indicates the color such as blue, red, yellow, and so on, and
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Thus, the local multi-color potential energy is defined from Eq. (16) as

UXbP v,y U.XP ®1p

c

To reduce UdXPwith the time evolution, all the color flux in the same cell should be rotated simultaneously
in the collision process equation (2) by an adaptive angle where UdXPis a minimum. Therefore, we derive
the adaptive angle in the next.

After the multi-particle collision, the color flux of particle i would be changed as

p.ap 1P V:Qp,ak &2p
Here, ¢ indicates the reference to time. Thus, U3X, ¢ p 1Pis calculated as

U, tp 1P Y% cos®Py q.8X, P F.&X, b sindi Y q.&, b F.&X, B ®3p

and we can see that UdX,¢p 1P vary with 0 of the collision matrix . Differentiating UX,zp 1P with
respect to the angle 0, we obtain

U, tp 1p

20 Ya sin(’i‘)bzcj q.0X, P F.&X P cosdk Z:qcax, tb F.X, bk ®4p

We define 0y and 0, as extremal values of Eq. (24) with the condition 0U /00 ¥4 0. These angles satisfy the
following equations:

z >..q.X,tb F.&X, b
tan&dyb Ya —

AP T X, P F.X, P

asp

0, ¥a 0o b . 26b

To find out an adaptive angle, we investigate the gradient of U3X, ¢ p 1Pat the neighborhood around these
extremal values. In the advance, we rewrite some functions to the simple one as follows:

Ao, L ®7b
o0 0%40
U¥sy 4.8, P F.&X R @sp

N%i > q&,tb F&X b ®9p
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To derive Eq. (32) from Eq. (31), we use Taylor expansions and neglect the higher order terms. Table 1
shows the sign of the numerator of gd&fParound 0,. Thus, we can conclude that the adaptive angle 0, should
be as follows:

0y if U>0
1 )
%A{% if U <o, ®3p

The kernel algorithm of the multiphase fluids model is briefly summarized as a three-step update. First, the
color flux and field are calculated by Egs. (6) and (7) for each particle in the same cell. Second, candidates of
the adaptive angle 0, are calculated by Egs. (25) and (26), and then 6, is determined by the condition (33).
Lastly, particles obey the multi-particle collision Eq. (2) by the rotation angle 0 ¥ 0,.

3.4. Comparison with the former IRLG

Turning now to the relation between IRLG [6] and our present model, the former model is regarded as
the limited case in our model. To show this, we choose the amplitude parameter «.,, as the following:

bl, ¢ Yac;
1 ) Js
Keie; Ya { I, o8, B4b

Here, ¢; indicates the color of ith particle. The color takes either red or blue, because IRLG is a binary
model. In this case, we can derive the following relation from Eq. (20):

F.Ys F,. 35p

Here, subscript r/b indicate red/blue. Substituting the above relation into Eq. (21), we can calculate the local
color potential energy U as follows:

UY% q, F, q, Fy a6b
Ya q F,. &B7p
Here,q Y24, q,P From Eq. (37), we can find that the local color potential energy is the inner product of

the net flux q and the field F,. The minimum energy state may then be determined where q is parallel to F,.
The corresponding collision matrix € is the following:

Table 1
The sign of the numerator of g&dp
0y A6 0o Oop AO
U>0 - 0 +

U<0 + 0 -
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Here, q ¥2q/jqj and f YuF, /iFj. The collision matrix (38) is the same as one in the former IRLG model.

Clearly, the condition (34) leads our model to the former IRLG model. To put it another way, we can
simulate flows of a binary fluid with other conditions on ., by using the present model. Furthermore, the
present model is able to be applied to multi-component fluids as showing in the following section, while the
former model can not.

4. Numerical simulations
4.1. Introduction

RLG simulations on a droplet have been carried out by using the former IRLG model [6]: the Galilean
invariance of the motion of a droplet is verified through the comparison under static and uniform flow
conditions [19]. The steady-state shape of a rising bubble for various the Etovos number E, and the Morton
number M is investigated [19-21], and the diagram of the steady-state shape as a function of E, and M is
agreed with [22]. In [23], the deformation of 2D single droplet in a linear shear flow as a function of
capillary number is agreed with 2D lattice Boltzmann simulation of [24]. With results from these studies, it
seems that IRLG, as well as the binary limit of the present model, are good agreement with conventional
studies.

Now, we carried out other numerical simulations to show the effectiveness of our model.

The first simulation is for a phase segregation. In this simulation, we verified the multi-color collision
rule equation (33) by reproducing a phase segregating behavior. Our present model could simulate a phase
segregation of five fluids, while the former IRLG model could not treat multi-component fluids consist over
two species.

In the second simulation, we confirmed Laplace’s law on the surface tension. Laplace’s law is satisfied in
the present model.

The third is the simulation of Brownian motion of a droplet. The droplet was driven by the thermal
fluctuation of the solvent. We confirmed that the probability distribution for the velocity of single droplet
agreed with Maxwell-Boltzmann distribution.

The last is a simulation of many immiscible droplets. Many immiscible droplets are regarded as vesicles
suspended in another fluid, which is so-called emulsion. A vesicle is a closed thin membrane separating the
internal fluid from the external solvent, and this is the fundamental structure of a red blood cell. Blood
consists of two parts. One is the solvent fluid called plasma, and the other is cells. Red blood cell (RBC) is
the most dominant cell on blood flows, because its volume fraction is typically 40% of blood. Considering
blood flows from the heart to capillary vessels, blood flows might be roughly decided into three categories
owing to the comparison between the size of a RBC and the diameter of blood vessels.

(1) Artery: Blood may be regarded as a homogeneous visco-elastic fluid, because the diameter of blood ves-
sels is enough larger than the size of a RBC. Casson model would be the most famous one [18].

(2) Arteriole: The assumption of homogeneity for blood has been broken down, because the diameter of
blood vessels may be of the order of the size of a RBC. Blood should be modeled explicitly as RBC
and fluid.

(3) Capillary: A precise mechanical modeling on the membrane of a RBC should be required, because the
diameter of blood vessels is comparable with the size of a RBC or smaller.
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We want the last simulation to open the way to simulate blood flows in (2) mentioned above, because the
aggregation of RBCs and its volume are the main topics in this scale due to the high volume fraction of
RBCs, where a precise modeling of a RBC is of less importance unless we would focus on flows in capillary
vessels.

The numerical conditions of each simulation are as follows. The mean number density of particles was
set to 20. Particles’ momenta were initialized by using the Maxwell-Boltzmann distribution with a tem-
perature 7. The mean flow velocity was kept as zero. The mass of each particle was 1.

4.2. Phase segregation

Fig. 1 shows the simulation of a five-fluid phase segregation using the immiscible multiphase fluids model
mentioned above. The calculations were carried out in a 2D system of the size 128 x 128 cells with doubly
periodic boundary conditions. Particles’ initial positions are decided in random. The volume fraction of
each species is the same. The interaction parameter k., is chosen as follows, thus all of the surface tension
coefficients is equal to each other

1 when ¢ ¥ c®
1 9
Kecd 73 { 1 when ¢ 81 c® ®B9P

Here, ¢ and ¢ indicate an arbitrary color.

In Fig. 1, we can observe that five colored fluids are separated to a quasi hexagonal configuration with
the time evolution, and each fluid makes an angle of 27t/3 with respect to other two fluids in an equilibrium
state at 60,000 time steps.

1800 time steps

4500 time steps 60000 time steps

Fig. 1. Nonequilibrium behavior of a five-fluid phase segregation with equal surface tensions in 128 x 128 cells. The initial configu-
ration is a random mixture.
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4.3. Laplace’s law

We test our model against Laplace’s law in two dimensions
APY4P, Py 1/4%. 310

Here, in/out indicate “inner/outer” pressure of a 2D droplet of radius R. ¢ indicates the surface tension
coefficient of a 2D droplet. Measurements of AP were started after 2000 time steps lasting for 2000 time
steps in a system of the size 4R 4R, and the calculation was performed five times with different initial
configurations. The temperature of a system is ranging from 0.1 to 2.0. Fig. 2 shows that surface tension
measured in our model obeys Laplace’s law.

4.4. Brownian motion of a droplet

We test the Brownian motion of the single droplet of the radius of 8 cells suspended in the fluctuating
fluid. The calculation was carried out in 2D system of the size 128 x 128. The background fluid is statis-
tically isotropic and stationary, namely, the mean flow velocity is zero. The temperature of the system was
set to 0.1. The velocity of the center of mass of the droplet was recorded for 2000000 times step, and then we
calculated the probability distribution function (PDF) for the velocity of the droplet. In the thermal
equilibrium state, the PDF should be Maxwell-Boltzmann distribution with the temperature of the system.

The calculated PDF is shown in Fig. 3. We fit the numerical data with Maxwell-Boltzmann distribution
via the temperature 7 and the mean velocity vy as follows:

M M& v,B
1 I,
néb Y 77 P ( T > Av. H1b

Here, v indicates the velocity of the center of mass of the droplet, M is the total mass of the droplet and Av
indicates the interval between v and v Av. In the calculation of PDF, Av was set to 10 * and the velocity
between v and vp Av was regarded as v.

25
/*/
T=20 -
15
o
< e
I T=1.0
05} oz
* T=05 . .-
/é," 77>‘”“7>_7~,,,~—
e s T=0.1
0 S B e
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1/R

Fig. 2. Numerical verification of Laplace’s law on our model. AP indicates the pressure difference between the inner and the outer
pressure of a droplet. R is the radius of a droplet.
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Fig. 3. Probability distribution function (PDF) for the velocity of the single droplet. The cross (+) indicates numerical results. The
doted line indicates Maxwell-Boltzmann distribution with the temperature 7 and the mean velocity vy.

Table 2
The value of fitting parameters of Eq. (41)
T Vo
x 9.7x10 3 -1x10 ¢
¥y 9.8x10 3 8.3x10 3

The fitting parameters are shown in Table 2. Table 2 shows that 7 is the same as the temperature of the
system and v, is zero within the size of Av, namely, the PDF for the velocity of the droplet is agreed with
Maxwell-Boltzmann distribution as expected. This means that the droplet was doing the Brownian motion
driven by the thermal fluctuation of background fluid.

4.5. Immiscible droplets

Two simulations of immiscible droplets suspended in another fluid were carried out in this section. The
interaction parameters are displayed in Table 3. In both cases, the initial configuration of droplets is a
regular lattice. The equilibrium shape of each droplet is a circle with the radius of 4 cells. The total number
of droplets is 121, namely, the total number of species is 122 included one-solvent fluid. The temperature T
of the system is set to 0.1 so that the droplet motion can be driven by thermal fluctuations in the solvent.

The simulation results in the first case are displayed in Fig. 4. In this case, the interaction parameter was
chosen to set

Table 3
The interaction parameter
Kyy Ksy Kss Kss0
Case 1 1.0 -1.0 3.0 -30.0
Case 2 1.0 -1.0 3.0 -5.0

Subscript v indicates the color of solvent, s indicates the color of a droplet and s® indicates the color of other droplets.
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Fig. 4. Droplets are separated by the solvent due to g0 > 20y, and the random configuration of droplets results from Brownian
motion driven by the thermal fluctuations of the solvent.

050 > 20,. op

Here, o4 indicates the surface tension coefficient between two droplets and oy, indicates the surface tension
coefficient between a droplet and the background solvent. When the simulation started, these droplets were
naturally driven by solvent particles and began to do the Brownian motion. Since 2ay, is less than o4, the
triple contact points of droplet-droplet-solvent are not stable. Thus, the dispersion of droplets is in
equilibrium when droplets are separated by the solvent. This is so-called the stable colloid dispersion.

The simulation results in the second case are displayed in Fig. 5. The interaction parameter was chosen
to set

Os0 < 204y, M3b

so that the triple contact points are stable. Thus, droplets could form aggregates, but not coalesce due to the
immiscible multiphase algorithm. Furthermore, aggregates developed bigger forms with the time evolution.
The resulting system is so-called the unstable colloid dispersion.

The way of modeling emulsion as many droplets is also appeared in a many-bubble model of the im-
miscible lattice gas cellular-automata by Rothman and Zaleski [25]. Our simulation result is found to be a
qualitative agreement with the result in [25], even though our algorithm is different from their model.

Rothman and Zaleski have developed three-component immiscible LGA model based on their binary
model, and then they applied three-component model to the simulation of many-bubble suspended in
another. In their approach, the collision of colored particle is decided by minimizing the color potential
energy for only two or three dominant components while the other has been neglected. This is the difference
on the treatment of N-collision between [25] and our model. This simplification of multi-color collision may
be reasonable only when the concentration of colors would not be high. In fact, N-collision would happen
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3000 time steps 10000 time steps

Fig. 5. Droplets can form aggregates due to o0 < oy, and aggregates grow bigger with the time evolution.

rarely if the system would be initialized as N-bubble, so that each model seems to be of consistent
qualitatively.

5. Conclusions

We have developed a new scheme for the simulation of immiscible multiphase fluids. The RLG model is
shown to have a huge potential for the simulation of complex flows. Our model is able to deal with N-fluid
interactions that leads to the N-phase segregation. Brownian motions of immiscible droplets are naturally
reproduced in the simulation and the stability of dispersion of immiscible droplets can be controlled by the
interaction parameter k.. In the near future, we will verify the quantitative accuracy of this model through
benchmarks on the dynamics of an immiscible many-droplet in 3D.
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